Lecture 13 - 2/27/2024

You didn’t learn any new Java today, but you did learn how to more
effectively write the Java you already know. You primarily learned
about Top-Down Design or as Professor Cannon put it, “Wishful
Programming”. So in this review, I will go over Top-Down design and
also talk about Bottom-Up design as well so you will have a better
understanding of both of these methods and choose which you think is
the best for you when you write your programs.

With Top-Down Design we start with the main product that we want to
run; From lecture this is the PigTest class, we can visualize it like
a tree:

PigTest.java

From PigTest we derive another crucial element, we need a Game class
SO our tree begins to grow:

PigTest.java
|

|
\Y

Game. java

Well then we start to think about the components of the Game class,
well to play a Game you definitely need Players, and in the case of
lecture we also needed a die. Our tree now looks as follows:

PigTest.java
|

|
\Y

Game.java
/\
/ N\

Player.java Die.java
This could obviously keep going for a while, but in the case of
lecture this is the final result. This process is the same for both
Top-Down as well as Bottom-Up except the Class Tree is reversed in
direction.



PigTest.java
|
|

Game.java

A

Player.java Die.java

(alternatively you could have wrote the arrows the same direction but have the bottom class on the top)

The direction of the arrow should key into the difference between
these design techniques. With Top-Down design, you implement the
class at the top and work your way down. With Bottom-Up design, you
implement the classes on the bottom and work your way up to the main
product. My preference is Bottom-Up design, I am not a “Wishful
Programmer” like Professor Cannon.

That is pretty much it, you can learn more about the effectiveness of
these techniques as well as when it may be better to use one or the
other by googling these methods. Best of luck on the current
homework!

Lecture 14 - 2/29/2024

There was not much new content covered in this lecture, the main
discussion focused on the idea of using simulations to determine
optimums for a particular strategy. You saw this explicitly with the
PigSim.java file. This is also the crux of the second part of
Homework 6. To visualize the simulation needed for HW 6, you have
two computers playing the game with each other, trying to play at
their best, you’ll need to test each effective combination of
strategies (this should sound familiar) given this structure we are
essentially trying to find the maximum of a bunch of minimums.
Consider the following table:

1 2 3 -4 6 10 | min is -4
241 -2 10 9 | min is -2
96 210 20 | min is O

2 4 91 10 -1 | min is -1



From this we can compute the maximum which is 0, this is the general
gist of how you should work through the simulation.



